Computing the Minkowskii functionals for four-dimensional digital images

Authors

  • O.A. Bogoyavlenskaya Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science

Keywords:

computing geometry, Minkowskii functionals, morphology of porous media

Abstract

The Minkowskii functionals are important for studying the morphology of porous media. This paper is devoted to constructing an algorithm for computing the Minkowskii functionals for four-dimensional digital images used to describe the dynamics of porous media. This algorithm is implemented as a software package.

Author

O.A. Bogoyavlenskaya

References

  1. Arns C.H., Knackstedt M.A., Pinczewski W.V., Mecke K.R. Euler–Poincaré characteristics of classes of disordered media // Phys. Rev. E. 2001. 63. doi: 10.1103/PhysRevE.63.031112.
  2. Arns C.H., Knackstedt M.A., Mecke K.R. Characterisation of irregular spatial structures by parallel sets and integral geometric measures // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004. 241, N 1–3. 351–372.
  3. Mecke K.R. Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics // Lecture Notes in Physics, Vol. 554. Berlin: Springer, 2000. 111–184.
  4. Bazaikin Ya., Gurevich B., Iglauer S., Khachkova T., Kolyukhin D., Lebedev M., Lisitsa V., Reshetova G. Effect of CT image size and resolution on the accuracy of rock property estimates // Journal of Geophysical Research — Solid Earth. 2017. 122, N 5. 3635–3647.
  5. Базайкин Я.В. Лекции по вычислительной топологии. Новосибирск: Изд-во НГУ, 2017.
  6. Хачкова Т.С., Базайкин Я.В., Лисица В.В. Применение методов вычислительной топологии для анализа изменения порового пространства породы в процессе химического растворения // Вычислительные методы и программирование. 2020. 21. 41–55.
  7. Santaló L.A. Integral geometry and geometric probability. Cambridge: Cambridge Univ. Press, 2004.
  8. Hadwiger H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin: Springer, 1957.
  9. Фоменко А.Т., Фукс Д.Б. Курс гомотопической топологии. М.: Наука, 1989.
  10. Mecke K. Integralgeometrie in der Statistischen Physik: Perkolation, komplexe Flüssigkeiten und die Struktur des Universums. Frankfurt: Deutsch, 1994.
  11. Reingold E.M., Nievergelt J., Deo N. Combinatorial algorithms. Theory and practice. Englewood Cliffs: Prentice-Hall, 1977.F

Published

2020-06-28

How to Cite

Bogoyavlenskaya O.A. Computing the Minkowskii Functionals for Four-Dimensional Digital Images // Numerical methods and programming. 2020. 21. 164-171

Issue

Section

Section 1. Numerical methods and applications