A software package for the mathematical simulation of fracture in a thermo-poroelastic medium



thermoporoelasticity, Biot model, fracture, thermodynamic consistency principle, finite element method


A software package for the mathematical simulation of thermo-poroelastic medium evolution with damage is considered. The employed model is a modification of the Biot model for thermo-poroelastic media and allows one to simulate the changes in the stress-strain state of the medium, the fluid flows, the nonisothermic effects, and the medium fracture. The medium damage is simulated using the continuum damage mechanics approaches by introducing a special variable called the damage parameter. This parameter characterizes the degree of medium fracture and its evolution is described by a given kinetic equation. The numerical algorithm is based on a finite element method. The time discretization is performed using an implicit scheme for displacements, pressure, and temperature and an explicit scheme for the damage parameter. The Taylor-Hood finite elements of second-order approximation in displacements and first-order approximation in pressure and temperature are chosen. The system of equations is solved in the framework of the "monolithic" formulation without the iterative coupling between groups of equations. The numerical results of solving the problem on the rock damage evolution due to thermal action are discussed.


A.S. Meretin


  1. Krajcinovic D., Fonseka G.U. The continuous damage theory of brittle materials, part 1: general theory // Journal of applied Mechanics. 1981. 48, N 4. 809–815.
  2. Murakami S. Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Dordrecht: Springer, 2012.
  3. Кондауров В.И., Фортов В.Е. Основы термомеханики конденсированной среды. М.: МФТИ, 2002.
  4. Biot M.A. General theory of three dimensional consolidation // Journal of Applied Physics. 1941. 12, N 2. 155–164.
  5. Noll W. A mathematical theory of the mechanical behavior of continuous media // Archive for Rational Mechanics and Analysis. 1958. 2, N 1. 197–226.
  6. Griffith A.A. The phenomena of rupture and flow in solids // Philosophical Transactions of the Royal Society of London. Ser. A. 1920. Vol. 221. 163–198.
  7. Качанов Л.М. О времени разрушения в условиях ползучести // Изв. АН СССР. ОТН. 1958. № 8. 26–31.
  8. Работнов Ю.Н. Механизм длительного разрушения // Вопросы прочности материалов и конструкций. М.: АН СССР, 1959. 5–7.
  9. Меретин А.С., Савенков Е.Б. Математическая модель фильтрационных процессов в термопороупругой среде с учетом континуального разрушения. Препринт ИПМ им. М.В. Келдыша № 58. М., 2019.
  10. Kim J., Tchelepi H.A., Juanes R. Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics // SPE J. 2011. 16. doi 10.2118/119084-PA.
  11. Taylor C., Hood P.A. A numerical solution of the Navier–Stokes equations using the finite element technique // Computers and Fluids. 1973. 1, N 1. 73–100.
  12. Brezzi F., Fortin M. Mixed and hybrid finite element methods. New York: Springer, 1991.
  13. Саад Ю. Итерационные методы для разреженных линейных систем. М.: Изд-во Моск. ун-та, 2013.
  14. Neuman S.P. Saturated-unsaturated seepage by finite elements // J. Hydraul. Div. 1973. 99, N 12. 2233–2250.
  15. Cuthill E., McKee J. Reducing the bandwidth of sparse symmetric matrices. New York: ACM Press, 1969. 157–172.
  16. C++ Template Library for Linear Algebra. URL: http://eigen.tuxfamily.org/.
  17. HYPRE: Scalable Linear Solvers and Multigrid Methods. https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
  18. ParaView. https://www.paraview.org/.
  19. Visualization Toolkit (VTK). https://www.vtk.org/
  20. Pogacnik J., O’Sullivan M., O’Sullivan J. A damage mechanics approach to modeling permeability enhancement in thermo-hydro-mechanical simulations // Proceedings of 39th Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University. 2014. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Pogacnik.pdf.
  21. Tang C.A. et al. Coupled analysis of flow, stress and damage (FSD) in rock failure // International Journal of Rock Mechanics and Mining Sciences. 2002. 39, N 4. 477–489.
  22. Beggs H.D., Robinson J.R. Estimating the viscosity of crude oil systems // Journal of Petroleum Technology. 1975. 27, N 9. 1140–1141.
  23. Sun F., Jia P., Xue S. Continuum damage modeling of hydraulic fracture from perforations in horizontal wells // Mathematical Problems in Engineering. 2019. doi 10.1155/2019/9304961.



How to Cite

Meretin A.S. A Software Package for the Mathematical Simulation of Fracture in a Thermo-Poroelastic Medium // Numerical methods and programming. 2020. 21. 138-151



Section 1. Numerical methods and applications