An inverse problem of synthesis of nanooptical security elements for visual and automated authenticity verification

Keywords:

nanooptical elements, flat computer optics, electron-beam lithography, security label verification

Abstract

This paper is concerned with solving inverse problems of the synthesis of nanooptical security elements. The synthesis of a nanooptical element involves calculating its phase function via solving an inverse problem and fabricating the microrelief with high precision. The microrelief of the nanooptical element illuminated at any point with coherent radiation produces an image in the focal plane parallel to the plane of the optical element. This image is used for the automated authenticity verification. The area of the optical element is divided into elementary regions. In each elementary region, the image is formed using binary kinoforms whose phase function is calculated via solving a nonlinear Fredholm integral equation of the first kind. The depth of the microrelief is constant in each elementary region and determines the color of that region when the optical element is illuminated with white light. The developed elements can be used to protect documents, excise stamps, and brands.

Authors

A.A. Goncharsky,

Lomonosov Moscow State University,
Research Computing Center
Leninskie Gory, Moscow, 119991, Russia
• Senior Researcher

S.R. Durlevich,

Lomonosov Moscow State University,
Research Computing Center
Leninskie Gory, Moscow, 119991, Russia
• Leading Programmer

References

  1. Van Renesse R.L. Optical document security. Boston: Artech House, 2005.
  2. Firsov An., Firsov A., Loechel B., et al. Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography // Opt. Express. 2014. 22, N 23. 28756–28770.
  3. Гончарский А.А. Об одной задаче синтеза нанооптических элементов // Вычислительные методы и программирование. 2008. 9. 405–408.
  4. Дурлевич С.Р. Об одной задаче компьютерного синтеза дифракционных оптических элементов для формирования 3D-изображений // Вычислительные методы и программирование. 2017. 18. 11–19.
  5. Rai-Choudhury P. Handbook of microlithography, micromachining, and microfabrication. Vol. 1: Microlithography. Bellingham: SPIE Optical Engineering Press, 1997.
  6. Goncharsky A., Goncharsky A., Durlevich S. High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology // Optical Engineering. 2017. 56, N 6. 063105-1–063105-6.
  7. Goncharsky A., Durlevich S. Cylindrical computer-generated hologram for displaying 3D images // Optics Express. 2018. 26, N 17. 22160–22167.
  8. Goncharsky A., Goncharsky A., Durlevich S. Diffractive optical element with asymmetric microrelief for creating visual security features // Opt. Express. 2015. 23, N 22. 29184–29192.
  9. Goncharsky A., Goncharsky A., Durlevich S. Diffractive optical element for creating visual 3D images // Opt. Express. 2016. 24, N 9. 9140–9148.
  10. Lesem L.B., Hirsch P.M., Jordan J.A. The kinoform: a new wavefront reconstruction device // IBM J. Res. Dev. 1969. 13, N 2. 150–155.
  11. Hirsch P.M., Jordan J.A., Lesem L.B. Method of making an object dependent diffuser. 1971. U.S. Patent 3,619,022.
  12. Гончарский А.В., Гончарский А.А. Компьютерная оптика. Компьютерная голография. М.: Изд-во Моск. ун-та, 2004.
  13. Тихонов А.Н. Об устойчивости обратных задач // Докл. АН СССР. 1943. 39, № 5. 195–198.
  14. Neubauer A. Tikhonov-regularization of ill-posed linear operator equations on closed convex sets // Journal of Approximation Theory. 1988. 53, N 3. 304–320.
  15. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
  16. Bakushinsky A., Goncharsky A. Ill-posed problems: theory and applications. Dordrecht: Kluwer, 1994.
  17. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
  18. Гончарский А.В., Попов В.В., Степанов В.В. Введение в компьютерную оптику. M.: Изд-во Моск. ун-та, 1991.
  19. Fienup J.R. Phase retrieval algorithms: a comparison // Appl. Opt. 1982. 21, N 15. 2758–2769.
  20. Fienup J.R. Iterative method applied to image reconstruction and to computer-generated holograms // Optical Engineering. 1980. 19, N 3. 297–305.
  21. Gallagher N.C., Liu B. Method for computing kinoforms that reduces image reconstruction error // Appl. Opt. 1973. 12, N 10. 2328–2335.
  22. Гончарский А.А., Дурлевич С.Р. Нанооптические элементы для формирования 2D изображений // Вычислительные методы и программирование. 2010. 11. 246–249.
  23. Гончарский А.А., Дурлевич С.Р. Об одной задаче синтеза нанооптических элементов для формирования динамических изображений // Вычислительные методы и программирование. 2013. 14. 343–347.
Published
2020-02-04
How to Cite
Goncharsky, A., & Durlevich, S. (2020). An inverse problem of synthesis of nanooptical security elements for visual and automated authenticity verification. Numerical Methods and Programming, 21(63), 56-63. https://doi.org/10.26089/NumMet.v21r105
Section 1. Numerical methods and applications

Most read articles by the same author(s)