Use of the computational topology to analyze the pore space changes during chemical dissolution

Keywords:

persistence homology, chemical dissolution

Abstract

A new algorithm for constructing the persistence diagrams to estimate the changes in the rock matrix topology during the chemical fluid-solid interaction. In the space of the persistence diagrams, a metric is introduced, which allows one to clusterize the diagrams in order to estimate their dissimilarities in the topology changes. This clusterization shows that the main parameters affecting the topology of the rock matrix are the reaction rate and the diffusion coefficient, whereas the fluid flow rate makes a smaller effect on the topology.

Authors

Ya.V. Bazaikin,

References

  1. Базайкин Я.В. Лекции по вычислительной топологии. Новосибирск: Изд-во НГУ, 2017.
  2. Гадыльшина К.А., Хачкова Т.С., Лисица В.В. Численное моделирование химического взаимодействия флюида с горной породой // Вычислительные методы и программирование. 2019. 20. 457–470.
  3. Новиков М.А., Базайкин Я.В., Лисица В.В., Козяев А.А. Моделирование волновых процессов в трещиноватопористых средах: влияние связности трещин на поглощение сейсмической энергии // Вычислительные методы и программирование. 2018. 19. 235–252.
  4. Новиков М.А., Лисица В.В., Козяев А.А. Численное моделирование волновых процессов в трещиновато-пористых флюидозаполненных средах // Вычислительные методы и программирование. 2018. 19. 130–149.
  5. Al-Khulaifi Y., Lin Q., Blunt M.J., Bijeljic B. Pore-scale dissolution by CO2 saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity // Water Resources Research. 2019. 55, N 4. 3171–3193.
  6. Amikiya A.E., Banda M.K. Modelling and simulation of reactive transport phenomena // Journal of Computational Science. 2018. 28. 155–167.
  7. Arson C., Vanorio T. Chemomechanical evolution of pore space in carbonate microstructures upon dissolution: linking pore geometry to bulk elasticity // Journal of Geophysical Research: Solid Earth. 2015. 120, N 10. 6878–6894.
  8. Bazaikin Y., Gurevich B., Iglauer S., Khachkova T., Kolyukhin D., Lebedev M., Lisitsa V., Reshetova G. Effect of CT image size and resolution on the accuracy of rock property estimates // Journal of Geophysical Research: Solid Earth. 2017. 122, N 5. 3635–3647.
  9. Biot M.A. Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range // Journal of the Acoustical Society of America. 1956. 28, N 2. 168–178.
  10. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range // Journal of the Acoustical Society of America. 1956. 28, N 2. 179–191.
  11. Carroll S., Hao Y., Smith M., Sholokhova Y. Development of scaling parameters to describe CO2-rock interactions within Weyburn–Midale carbonate flow units // International Journal of Greenhouse Gas Control. 2013. 16, Suppl. 1. S185–S193.
  12. Cohen-Steiner D., Edelsbrunner H., Harer J. Stability of persistence diagrams // Discrete Comput. Geom. 2007. 37. 103–120.
  13. Costa T.B., Kennedy K., Peszynska M. Hybrid three-scale model for evolving pore-scale geometries // Computational Geosciences. 2018. 22, N 3. 925–950.
  14. Cui M.-J., Zheng J.-J., Zhang R.-J., Lai H.-J., Zhang J. Influence of cementation level on the strength behaviour of bio-cemented sand // Acta Geotechnica. 2017. 12, N 5. 971–986.
  15. Edelsbrunner H., Letscher D., Zomorodian A. Topological persistence and simplification // Discrete Comput. Geom. 2002. 28. 511–533.
  16. Edelsbrunner H., Harer J.L. Computational topology: an introduction. Providence: AMS Press, 2010.
  17. Ghommem M., Zhao W., Dyer S., Qiu X., Brady D. Carbonate acidizing: modeling, analysis, and characterization of wormhole formation and propagation // Journal of Petroleum Science and Engineering. 2015. 131. 18–33.
  18. Gibou F., Fedkiw R., Osher S. A review of level-set methods and some recent applications // Journal of Computational Physics. 2018. 353. 82–109.
  19. Gouze P., Luquot L. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution // Journal of Contaminant Hydrology. 2011. 120–121. 45–55.
  20. Gu´erillot D., Bruyelle J. Compositional dual mesh method for single phase flow in heterogeneous porous media — application to CO2 storage // Computational Geosciences. 2017. 21, N 5–6. 949–961.
  21. Hao Y., Smith M., Sholokhova Y., Carroll S. CO2-induced dissolution of low permeability carbonates. Part II: numerical modeling of experiments // Advances in Water Resources. 2013. 62. Part C. 388–408.
  22. Huang F., Bergmann P., Juhlin C., Ivandic M., Luth S., Ivanova A., Kempka T., Henninges J., Sopher D., Zhang F.The first post-injection seismic monitor survey at the Ketzin pilot CO2storage site: results from time-lapse analysis //Geophysical Prospecting. 2018. 66, N 1. 62–84.
  23. Kang Q., Chen L., Valocchi A.J., Viswanathan H.S. Pore-scale study of dissolution-induced changes in permeability and porosity of porous media // Journal of Hydrology. 2014. 517. 1049–1055.
  24. Kong T.Y., Rosenfeld A. Digital topology: introduction and survey // Computer Vision, Graphics and Image Processing. 1989. 48, N 3. 357–393.
  25. Lebedev M., Zhang Y., Sarmadivaleh M., Barifcani A., Al-Khdheeawi E., Iglauer S. Carbon geosequestration in limestone: pore-scale dissolution and geomechanical weakening // International Journal of Greenhouse Gas Control. 2017. 66. 106–119.
  26. Li X., Huang H., Meakin P. Level set simulation of coupled advection–diffusion and pore structure evolution due to mineral precipitation in porous media // Water Resources Research. 2008. 44. doi 10.1029/2007WR006742.
  27. Li X., Huang H., Meakin P. A three-dimensional level set simulation of coupled reactive transport and precipitation/ dissolution // International Journal of Heat and Mass Transfer. 2010. 53, N 13–14. 2908–2923.
  28. McLeod H.O. Matrix acidizing // Journal of Petroleum Technology. 1984. 36, N 12. 2055–2069.
  29. Meirmanov A., Omarov N., Tcheverda V., Zhumaly A. Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model // Сиб. электрон. матем. изв. 2015. 12, 884–900.
  30. Menke H.P., Reynolds C.A., Andrew M.G., Pereira Nunes J.P., Bijeljic B., Blunt M.J. 4D multi-scale imaging of reactive flow in carbonates: assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales // Chemical Geology. 2018. 481. 27–37.
  31. Mittal R., Iaccarino G. Immersed boundary methods // Annual Review of Fluid Mechanics. 2005. 37, N 1. 239–261.
  32. Molins S., Trebotich D., Steefel C.I., Shen C. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation // Water Resources Research. 2012. 48. doi 10.1029/2011WR011404.
  33. Molins S., Trebotich D., Yang L., Ajo-Franklin J.B., Ligocki T.J., Shen C., Steefel C.I. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments // Environmental Science and Technology. 2014. 48, N 13. 7453–7460.
  34. Nishiyama N., Yokoyama T. Permeability of porous media: role of the critical pore size // Journal of Geophysical Research: Solid Earth. 2017. 122, N 9. 6955–6971.
  35. Noiriel C., Luquot L., Mad´e B., Raimbault L., Gouze P., van der Lee J. Changes in reactive surface area during limestone dissolution: an experimental and modelling study // Chemical Geology. 2009. 265, N 1–2. 160–170.
  36. Osher S., Fedkiw R.P. Level set methods: an overview and some recent results // Journal of Computational Physics. 2001. 169, N 2. 463–502.
  37. Safari A., Dowlatabad M.M., Hassani A., Rashidi F. Numerical simulation and X-ray imaging validation of wormhole propagation during acid core-flood experiments in a carbonate gas reservoir // Journal of Natural Gas Science and Engineering. 2016. 30. 539–547.
  38. Smith M.M., Hao Y., Mason H.E., Carroll S.A. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO2-acidified brines // Energy Procedia. 2014. 63. 3126–3137.
  39. Sotiropoulos F., Yang X. Immersed boundary methods for simulating fluid-structure interaction // Progress in Aerospace Sciences. 2014. 65. 1–21.
  40. Steefel C.I., Appelo C.A.J., Arora B., Jacques D., Kalbacher T., Kolditz O., Lagneau V., Lichtner P.C., Mayer K.U., Meeussen J.C.L., Molins S., Moulton D., Shao H., Simunek J., Spycher N., Yabusaki S.B., Yeh G.T. Reactive transport codes for subsurface environmental simulation // Computational Geosciences. 2015. 19, N 3. 445–478.
  41. Vanorio T., Mavko G., Vialle S., Spratt K. The rock physics basis for 4D seismic monitoring of CO2 fate: are we there yet? // The Leading Edge. 2010. 29, N 2. 113–240.
  42. Verri A., Uras C., Frosini P., Ferri M. On the use of size functions for shape analysis // Biological Cybernetics. 1993. 70, N 2. 99–107.
  43. Yang G., Li Y., Atrens A., Liu D., Wang Y., Jia L., Lu Y. Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS Demonstration Project, China // Journal of Earth Science. 2017. 28, N 3. 457–472.
  44. Zhu W., Hirth G. A network model for permeability in partially molten rocks // Earth and Planetary Science Letters. 2003. 212, N 3–4. 407–416.
  45. Zomorodian A., Carlsson G. Computing persistence homology // Discrete Comput. Geom. 2005. 33, N 2. 249–274.
  46. Zuo L., Ajo-Franklin J.B., Voltolini M., Geller J.T., Benson S.M. Pore-scale multiphase flow modeling and imaging of CO2 exsolution in sandstone // Journal of Petroleum Science and Engineering. 2017. 155, 63–77.
Published
2020-01-30
How to Cite
Khachkova, T., Bazaikin, Y., & Lisitsa, V. (2020). Use of the computational topology to analyze the pore space changes during chemical dissolution. Numerical Methods and Programming, 21(63), 41-55. https://doi.org/10.26089/NumMet.v21r104
Section 1. Numerical methods and applications